Experimental Comparison of Symbolic Learning Programs for the Classification of Gene Network Topology Models

نویسندگان

  • Andreas D. Lattner
  • John J. Grefenstette
چکیده

This study addresses the problem of identifying the large-scale topology of gene regulation networks from features that can be derived from microarray data sets. Understanding large-scale structures of gene regulation is fundamentally important in biology. Recent analysis of network properties of known biological networks has shown that they display scale-free features, but it is not yet clear whether these features are generic to all biological networks. In this work five different symbolic classifiers – AQ20, C4.5, C4.5rules CN2 and RIPPER – were employed to classify simulated networks as random or scalefree. In the best case, an average accuracy of over 96% could be achieved by C4.5rules in ten crossvalidation runs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of classic regression methods with neural network and support vector machine in classifying groundwater resources

In the present era, classification of data is one of the most important issues in various sciences in order to detect and predict events. In statistics, the traditional view of these classifications will be based on classic methods and statistical models such as logistic regression. In the present era, known as the era of explosion of information, in most cases, we are faced with data that c...

متن کامل

Classification and Comparison of Methods for Discovering Coverage Loss Areas in Wireless Sensor Networks

In recent years, wireless sensor networks data is taken into consideration as an ideal source, in terms of speed, accuracy and cost, in order to study the Earth's surface. One of the most important challenges in this area, is the signaling network coverage and finding holes. In recent years, wireless sensor networks data is taken into consideration as an ideal source, in terms of speed, accurac...

متن کامل

Porosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation

The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003